18 research outputs found

    Disentangling Climate and Disturbance Effects on Regional Vegetation Greening Trends

    Get PDF
    Productivity of northern latitude forests is an important driver of the terrestrial carbon cycle and is already responding to climate change. Studies ofthe satellite-derived Normalized Difference VegetationIndex (NDVI) for northern latitudes indicate recent changes in plant productivity. These detected greening and browning trends are often attributedto a lengthening of the growing season from warming temperatures. Yet, disturbance-recovery dynamics are strong drivers of productivity and can mask direct effects of climate change. Here, we analyze 1-km resolution NDVI data from 1989to 2014 for the northern latitude forests of the Greater Yellowstone Ecosystem for changes in plant productivity to address the following questions:(1) To what degree has greening taken place in the GYE over the past three decades? and (2) What is the relative importance of disturbance and climate in explaining NDVI trends? We found that the spatial extents of statistically significant productivity trends were limited to local greening and browning areas. Disturbance history, predominately fire disturbance, was a major driver of these detected NDVI trends. After accounting for fire-,insect-, and human-caused disturbances, increasing productivity trends remained. Productivity of northern latitude forests is generally considered temperature-limited; yet, we found that precipitation was a key driver of greening in the GYE

    Exploring the link between MORF4L1 and risk of breast cancer.

    Get PDF
    INTRODUCTION: Proteins encoded by Fanconi anemia (FA) and/or breast cancer (BrCa) susceptibility genes cooperate in a common DNA damage repair signaling pathway. To gain deeper insight into this pathway and its influence on cancer risk, we searched for novel components through protein physical interaction screens. METHODS: Protein physical interactions were screened using the yeast two-hybrid system. Co-affinity purifications and endogenous co-immunoprecipitation assays were performed to corroborate interactions. Biochemical and functional assays in human, mouse and Caenorhabditis elegans models were carried out to characterize pathway components. Thirteen FANCD2-monoubiquitinylation-positive FA cell lines excluded for genetic defects in the downstream pathway components and 300 familial BrCa patients negative for BRCA1/2 mutations were analyzed for genetic mutations. Common genetic variants were genotyped in 9,573 BRCA1/2 mutation carriers for associations with BrCa risk. RESULTS: A previously identified co-purifying protein with PALB2 was identified, MRG15 (MORF4L1 gene). Results in human, mouse and C. elegans models delineate molecular and functional relationships with BRCA2, PALB2, RAD51 and RPA1 that suggest a role for MRG15 in the repair of DNA double-strand breaks. Mrg15-deficient murine embryonic fibroblasts showed moderate sensitivity to γ-irradiation relative to controls and reduced formation of Rad51 nuclear foci. Examination of mutants of MRG15 and BRCA2 C. elegans orthologs revealed phenocopy by accumulation of RPA-1 (human RPA1) nuclear foci and aberrant chromosomal compactions in meiotic cells. However, no alterations or mutations were identified for MRG15/MORF4L1 in unclassified FA patients and BrCa familial cases. Finally, no significant associations between common MORF4L1 variants and BrCa risk for BRCA1 or BRCA2 mutation carriers were identified: rs7164529, Ptrend = 0.45 and 0.05, P2df = 0.51 and 0.14, respectively; and rs10519219, Ptrend = 0.92 and 0.72, P2df = 0.76 and 0.07, respectively. CONCLUSIONS: While the present study expands on the role of MRG15 in the control of genomic stability, weak associations cannot be ruled out for potential low-penetrance variants at MORF4L1 and BrCa risk among BRCA2 mutation carriers.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Interactive effects of climate and disturbance on tree species distributions, The

    Get PDF
    2015 Spring.Climate change is expected to alter species distributions as ranges shift to track favorable temperature and precipitation regimes. Range shifts are already being observed across a wide range of taxa, but many species are not keeping pace with the rate of recent climate warming. This is particularly true for tree species, which often experience significant migration lags due to a variety of non-climatic factors that can hinder range expansion or delay range retreats. Because many other species depend on trees for food or habitat, migration lags in tree species may have cascading impacts on a wide range of taxa that would otherwise face few barriers to migration. The importance of understanding how climate change will affect tree species distributions prompted several related research questions: 1) What factors contribute to the observed lags in tree species distributions? 2) Can biotic disturbances accelerate climate-driven shifts at the range margins of trees species? 3) How important is climate in determining landscape-scale vegetation patterns? My dissertation research addresses these questions using an integrated approach that draws on exiting literature, field sampling, and statistical models to inform our understanding of potential climate change impacts on tree species distributions. Observations of contemporary tree species migrations occurring throughout the world suggest that migration lags are pervasive and can be caused by a wide variety of abiotic factors and biotic processes. Tree migrations are likely to occur episodically when migration constrains are overcome, resulting in temporal variability in the migration rate. Physical disturbances such as fire can reduce competition and initiate periods of rapid change, but the effects of biological disturbances such as insect outbreaks are more nuanced. A case study examining the impacts of climate change and mountain pine beetle (Dendroctonus ponderosae) disturbance at lodgepole pine (Pinus contorta) range margins suggests that while biological disturbances may accelerate a range retreat by killing mature trees, they do not initiate range expansion for the target species. The impact of non-climatic constraints on current tree species distributions was also evident at the landscape scale, and climatic variables alone proved insufficient to explain patterns of co-occurrence among tree species. Together, these findings suggest that Rocky Mountain tree species will not uniformly shift upward in elevation as the climate continues to warm. Range shifts will likely be episodic and idiosyncratic, and forecasts based solely on climate data may over-estimate the rate and under-estimate the landscape-scale heterogeneity of potential distribution changes

    Breast Cancer Risk and 6q22.33: Combined Results from Breast Cancer Association Consortium and Consortium of Investigators on Modifiers of BRCA1/2

    Get PDF
    Recently, a locus on chromosome 6q22.33 (rs2180341) was reported to be associated with increased breast cancer risk in the Ashkenazi Jewish (AJ) population, and this association was also observed in populations of non-AJ European ancestry. In the present study, we performed a large replication analysis of rs2180341 using data from 31,428 invasive breast cancer cases and 34,700 controls collected from 25 studies in the Breast Cancer Association Consortium (BCAC). In addition, we evaluated whether rs2180341 modifies breast cancer risk in 3,361 BRCA1 and 2,020 BRCA2 carriers from 11 centers in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Based on the BCAC data from women of European ancestry, we found evidence for a weak association with breast cancer risk for rs2180341 (per-allele odds ratio (OR) = 1.03, 95% CI 1.00-1.06, p = 0.023). There was evidence for heterogeneity in the ORs among studies (I-2 = 49.3%; p

    Exploring the link between MORF4L1 and risk of breast cancer

    No full text
    Introduction: Proteins encoded by Fanconi anemia (FA) and/or breast cancer (BrCa) susceptibility genes cooperate in a common DNA damage repair signaling pathway. To gain deeper insight into this pathway and its influence on cancer risk, we searched for novel components through protein physical interaction screens. Methods: Protein physical interactions were screened using the yeast two-hybrid system. Co-affinity purifications and endogenous co-immunoprecipitation assays were performed to corroborate interactions. Biochemical and functional assays in human, mouse and Caenorhabditis elegans models were carried out to characterize pathway components. Thirteen FANCD2-monoubiquitinylation-positive FA cell lines excluded for genetic defects in the downstream pathway components and 300 familial BrCa patients negative for BRCA1/2 mutations were analyzed for genetic mutations. Common genetic variants were genotyped in 9,573 BRCA1/2 mutation carriers for associations with BrCa risk. Results: A previously identified co-purifying protein with PALB2 was identified, MRG15 (MORF4L1 gene). Results in human, mouse and C. elegans models delineate molecular and functional relationships with BRCA2, PALB2, RAD51 and RPA1 that suggest a role for MRG15 in the repair of DNA double-strand breaks. Mrg15-deficient murine embryonic fibroblasts showed moderate sensitivity to γ-irradiation relative to controls and reduced formation of Rad51 nuclear foci. Examination of mutants of MRG15 and BRCA2 C. elegans orthologs revealed phenocopy by accumulation of RPA-1 (human RPA1) nuclear foci and aberrant chromosomal compactions in meiotic cells. However, no alterations or mutations were identified for MRG15/MORF4L1 in unclassified FA patients and BrCa familial cases. Finally, no significant associations between common MORF4L1 variants and BrCa risk for BRCA1 or BRCA2 mutation carriers were identified: rs7164529, Ptrend = 0.45 and 0.05, P2df = 0.51 and 0.14, respectively; and rs10519219, Ptrend = 0.92 and 0.72, P2df = 0.76 and 0.07, respectively. Conclusions: While the present study expands on the role of MRG15 in the control of genomic stability, weak associations cannot be ruled out for potential low-penetrance variants at MORF4L1 and BrCa risk among BRCA2 mutation carriers
    corecore